Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(5): 1570-1578, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38287297

RESUMO

Glioblastoma (GBM) is the most complex and lethal primary brain cancer. Adequate drug diffusion and penetration are essential for treating GBM, but how the spatial heterogeneity in GBM impacts drug diffusion and transport is poorly understood. Herein, we report a new method, photoactivation of plasmonic nanovesicles (PANO), to measure molecular diffusion in the extracellular space of GBM. By examining three genetically engineered GBM mouse models that recapitulate key clinical features including the angiogenic core and diffuse infiltration, we found that the tumor margin has the lowest diffusion coefficient (highest tortuosity) compared with the tumor core and surrounding brain tissue. Analysis of the cellular composition shows that tortuosity in the GBM is strongly correlated with neuronal loss and astrocyte activation. Our all-optical measurement reveals the heterogeneous GBM microenvironment and highlights the tumor margin as a diffusion barrier for drug transport in the brain, with implications for therapeutic delivery.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Camundongos , Animais , Glioblastoma/patologia , Neoplasias Encefálicas/tratamento farmacológico , Encéfalo/patologia , Linhagem Celular Tumoral , Espaço Extracelular , Microambiente Tumoral
2.
Small Methods ; 8(1): e2301117, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37922523

RESUMO

Live imaging of the brain extracellular matrix (ECM) provides vital insights into changes that occur in neurological disorders. Current techniques such as second or third-harmonic generation offer limited contrast for live imaging of the brain ECM. Here, a new method, pan-ECM via chemical labeling of extracellular proteins, is introduced for live brain ECM imaging. pan-ECM labels all major ECM components in live tissue including the interstitial matrix, basement membrane, and perineuronal nets. pan-ECM enables in vivo observation of the ECM heterogeneity between the glioma core and margin, as well as the assessment of ECM deterioration under stroke condition, without ECM shrinkage from tissue fixation. These findings indicate that the pan-ECM approach is a novel way to image the entire brain ECM in live brain tissue with optical resolution. pan-ECM has the potential to advance the understanding of ECM in brain function and neurological diseases.


Assuntos
Doenças do Sistema Nervoso , Acidente Vascular Cerebral , Humanos , Matriz Extracelular/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Acidente Vascular Cerebral/metabolismo , Doenças do Sistema Nervoso/diagnóstico por imagem , Doenças do Sistema Nervoso/metabolismo , Membrana Basal
3.
bioRxiv ; 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37961149

RESUMO

Glioblastoma (GBM) is the most complex and lethal adult primary brain cancer. Adequate drug diffusion and penetration are essential for treating GBM, but how the spatial heterogeneity in GBM impacts drug diffusion and transport is poorly understood. Herein, we report a new method, photoactivation of plasmonic nanovesicles (PANO), to measure molecular diffusion in the extracellular space of GBM. By examining three genetically engineered GBM mouse models that recapitulate key clinical features including angiogenic core and diffuse infiltration, we found that the tumor margin has the lowest diffusion coefficient (highest tortuosity) compared with the tumor core and surrounding brain tissue. Analysis of the cellular composition shows that the tortuosity in the GBM is strongly correlated with neuronal loss and astrocyte activation. Our all-optical measurement reveals the heterogeneous GBM microenvironment and highlights the tumor margin as a diffusion barrier for drug transport in the brain, with implications for therapeutic delivery.

4.
bioRxiv ; 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37034592

RESUMO

The brain extracellular matrix (ECM), consisting of proteins and glycosaminoglycans, is a critical scaffold in the development, homeostasis, and disorders of the central nervous system (CNS) and undergoes remodeling in response to environmental cues. Live imaging of brain ECM structure represents a native view of the brain ECM but, until now, remains challenging due to the lack of a robust fluorescent labeling approach. Here, we developed a pan-ECM method for labeling the entire (Greek: pan) brain ECM network by screening and delivering a protein-reactive dye into the brain. pan-ECM enables imaging of ECM compartments in live brain tissue, including the interstitial matrix, basement membrane (BM), and perineuronal nets (PNNs), and even the ECM in glioblastoma and stroke mouse brains. This approach provides access to the structure and dynamics of the ECM and enhances our understanding of the complexities of the brain ECM and its contribution to brain health and disease.

5.
Appl Microbiol Biotechnol ; 106(19-20): 6551-6566, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36075984

RESUMO

TetR family transcriptional regulators (TFRs) are widespread in actinomycetes, which exhibit diverse regulatory modes in antibiotic biosynthesis. Nitrogen regulators play vital roles in modulation of primary and secondary metabolism. However, crosstalk between TFR and nitrogen regulator has rarely been reported in actinomycetes. Herein, we demonstrated that a novel TFR, SACE_4839, was negatively correlated with erythromycin yield in Saccharopolyspora erythraea A226. SACE_4839 indirectly suppressed erythromycin synthetic gene eryAI and resistance gene ermE and directly inhibited its adjacent gene SACE_4838 encoding a homologue of nitrogen metabolite repression (NMR) regulator NmrA (herein named NmrR). The SACE_4839-binding sites within SACE_4839-nmrR intergenic region were identified. NmrR positively controlled erythromycin biosynthesis by indirectly stimulating eryAI and ermE and directly repressing SACE_4839. NmrR was found to affect growth viability under the nitrogen source supply. Furthermore, NmrR directly repressed glutamine and glutamate utilization-related genes SACE_1623, SACE_5070 and SACE_5979 but activated nitrate utilization-associated genes SACE_1163, SACE_4070 and SACE_4912 as well as nitrite utilization-associated genes SACE_1476 and SACE_4514. This is the first reported NmrA homolog for modulating antibiotic biosynthesis and nitrogen metabolism in actinomycetes. Moreover, combinatorial engineering of SACE_4839 and nmrR in the high-yield S. erythraea WB resulted in a 68.8% increase in erythromycin A production. This investigation deepens the understanding of complicated regulatory network for erythromycin biosynthesis. KEY POINTS: • SACE_4839 and NmrR had opposite contributions to erythromycin biosynthesis. • NmrR was first identified as a homolog of another nitrogen regulator NmrA. • Cross regulation between SACE_4839 and NmrR was revealed.


Assuntos
Actinobacteria , Saccharopolyspora , Actinobacteria/genética , Antibacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Intergênico , Eritromicina , Glutamatos/metabolismo , Glutamina/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Nitrogênio/metabolismo , Saccharopolyspora/metabolismo
6.
Angew Chem Int Ed Engl ; 61(34): e202206122, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35723610

RESUMO

Neuropeptides are abundant signaling molecules in the central nervous system. Yet remarkably little is known about their spatiotemporal spread and biological activity. Here, we developed an integrated optical approach using Plasmonic nAnovesicles and cell-based neurotransmitter fluorescent engineered reporter (CNiFER), or PACE, to probe neuropeptide signaling in the mouse neocortex. Small volumes (fL to pL) of exogenously supplied somatostatin-14 (SST) can be rapidly released under near-infrared light stimulation from nanovesicles implanted in the brain and detected by SST2 CNiFERs with nM sensitivity. Our measurements reveal reduced but synchronized SST transmission within 130 µm, and markedly smaller and delayed transmission at longer distances. These measurements enabled a quantitative estimation of the SST loss rate due to peptide degradation and binding. PACE offers a new tool for determining the spatiotemporal scales of neuropeptide volume transmission and signaling in the brain.


Assuntos
Neuropeptídeos , Animais , Encéfalo/metabolismo , Camundongos , Transdução de Sinais , Somatostatina/metabolismo
7.
Neurophotonics ; 9(3): 032210, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35573823

RESUMO

Diffusion of substances in the brain extracellular space (ECS) is important for extrasynaptic communication, extracellular ionic homeostasis, drug delivery, and metabolic waste clearance. However, substance diffusion is largely constrained by the geometry of brain ECS and the extracellular matrix. Investigating the diffusion properties of substances not only reveals the structural information of the brain ECS but also advances the understanding of intercellular signaling of brain cells. Among different techniques for substance diffusion measurement, the optical imaging method is sensitive and straightforward for measuring the dynamics and distribution of fluorescent molecules or sensors and has been used for molecular diffusion measurement in the brain. We mainly discuss recent advances of optical imaging-enabled measurements toward dynamic, anisotropic, high-resolution, and functional aspects of the brain ECS diffusion within the last 5 to 10 years. These developments are made possible by advanced imaging, such as light-sheet microscopy and single-particle tracking in tissue, and new fluorescent biosensors for neurotransmitters. We envision future efforts to map the ECS diffusivity across the brain under healthy and diseased conditions to guide the therapeutic delivery and better understand neurochemical transmissions that are relevant to physiological signaling and functions in brain circuits.

8.
Animals (Basel) ; 11(6)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208015

RESUMO

Pearl gentian grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂) is a fish of high commercial value in the aquaculture industry in Asia. However, this hybrid fish is not cold-tolerant, and its molecular regulation mechanism underlying cold stress remains largely elusive. This study thus investigated the liver transcriptomic responses of pearl gentian grouper by comparing the gene expression of cold stress groups (20, 15, 12, and 12 °C for 6 h) with that of control group (25 °C) using PacBio SMRT-Seq and Illumina RNA-Seq technologies. In SMRT-Seq analysis, a total of 11,033 full-length transcripts were generated and used as reference sequences for further RNA-Seq analysis. In RNA-Seq analysis, 3271 differentially expressed genes (DEGs), two low-temperature specific modules (tan and blue modules), and two significantly expressed gene sets (profiles 0 and 19) were screened by differential expression analysis, weighted gene co-expression networks analysis (WGCNA), and short time-series expression miner (STEM), respectively. The intersection of the above analyses further revealed some key genes, such as PCK, ALDOB, FBP, G6pC, CPT1A, PPARα, SOCS3, PPP1CC, CYP2J, HMGCR, CDKN1B, and GADD45Bc. These genes were significantly enriched in carbohydrate metabolism, lipid metabolism, signal transduction, and endocrine system pathways. All these pathways were linked to biological functions relevant to cold adaptation, such as energy metabolism, stress-induced cell membrane changes, and transduction of stress signals. Taken together, our study explores an overall and complex regulation network of the functional genes in the liver of pearl gentian grouper, which could benefit the species in preventing damage caused by cold stress.

9.
Matter ; 4(5): 1484-1510, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33997768

RESUMO

Understanding the signal transmission and processing within the central nervous system (CNS) is a grand challenge in neuroscience. The past decade has witnessed significant advances in the development of new tools to address this challenge. Development of these new tools draws diverse expertise from genetics, materials science, electrical engineering, photonics and other disciplines. Among these tools, nanomaterials have emerged as a unique class of neural interfaces due to their small size, remote coupling and conversion of different energy modalities, various delivery methods, and mitigated chronic immune responses. In this review, we will discuss recent advances in nanotransducers to modulate and interface with the neural system without physical wires. Nanotransducers work collectively to modulate brain activity through optogenetic, mechanical, thermal, electrical and chemical modalities. We will compare important parameters among these techniques including the invasiveness, spatiotemporal precision, cell-type specificity, brain penetration, and translation to large animals and humans. Important areas for future research include a better understanding of the nanomaterials-brain interface, integration of sensing capability for bidirectional closed-loop neuromodulation, and genetically engineered functional materials for cell-type specific neuromodulation.

10.
Oxid Med Cell Longev ; 2020: 3690123, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32064022

RESUMO

Thioridazine (THIO) is a phenothiazine derivative that is mainly used for the treatment of psychotic disorders. However, cardiac arrhythmias especially QT interval prolongation associated with the application of this compound have received serious attention after its introduction into clinical practice, and the mechanisms underlying the cardiotoxicity induced by THIO have not been well defined. The present study was aimed at exploring the long-term effects of THIO on the hERG and L-type calcium channels, both of which are relevant to the development of QT prolongation. The hERG current (I hERG) and the calcium current (I Ca-L) were measured by patch clamp techniques. Protein levels were analyzed by Western blot, and channel-chaperone interactions were determined by coimmunoprecipitation. Reactive oxygen species (ROS) were determined by flow cytometry and laser scanning confocal microscopy. Our results demonstrated that THIO induced hERG channel deficiency but did not alter channel kinetics. THIO promoted ROS production and stimulated endoplasmic reticulum (ER) stress and the related proteins. The ROS scavenger N-acetyl cysteine (NAC) significantly attenuated hERG reduction induced by THIO and abolished the upregulation of ER stress marker proteins. Meanwhile, THIO increased the degradation of hERG channels via disrupting hERG-Hsp70 interactions. The disordered hERG proteins were degraded in proteasomes after ubiquitin modification. On the other hand, THIO increased I Ca-L density and intracellular Ca2+ ([Ca2+]i) in neonatal rat ventricular cardiomyocytes (NRVMs). The specific CaMKII inhibitor KN-93 attenuated the intracellular Ca2+ overload, indicating that ROS-mediated CaMKII activation promoted calcium channel activation induced by THIO. Optical mapping analysis demonstrated the slowing effects of THIO on cardiac repolarization in mouse hearts. THIO significantly prolonged APD50 and APD90 and increased the incidence of early afterdepolarizations (EADs). In human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), THIO also resulted in APD prolongation. In conclusion, dysfunction of hERG channel proteins and activation of L-type calcium channels via ROS production might be the ionic mechanisms for QT prolongation induced by THIO.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Canais de Cálcio Tipo L/metabolismo , Cardiotoxicidade/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Canais de Potássio Éter-A-Go-Go/metabolismo , Tioridazina/toxicidade , Potenciais de Ação/fisiologia , Animais , Benzilaminas/farmacologia , Cálcio/metabolismo , Canais de Cálcio Tipo L/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Estresse do Retículo Endoplasmático/genética , Canais de Potássio Éter-A-Go-Go/fisiologia , Células HEK293 , Proteínas de Choque Térmico HSP70/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Sulfonamidas/farmacologia , Ubiquitinação
11.
Mol Pharm ; 16(4): 1477-1488, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30807184

RESUMO

The hERG potassium channel (IKr) encoded by human ether-a-go-go-related gene plays an important role in cardiac repolarization. Decreased IKr may lead to long QT syndrome, which subsequently causes torsade de pointes and sudden cardiac death. Previous studies have shown that statins inhibit IKr and are more potent in inhibiting hERG currents when combined with other drugs. Since chemical structure of rosuvastatin is similar to that of several IKr blockers (ibutilide and E-4031), the present study aimed to reveal the mechanism that underlies rosuvastatin-induced hERG current reduction and to evaluate the possibility of cardiac toxicity. The results showed that rosuvastatin reduced hERG currents by accelerating the inactivation and prolonged action potential duration (APD) in hiPSC-CMs. Meanwhile, it was observed that rosuvastatin reduced the expression of the mature hERG. Transcription factor Sp1 was involved in hERG protein downregulation induced by rosuvastatin, and the result was verified by Sp1 siRNA and Sp1 agonist epicatechin. These results indicated that rosuvastatin could potentially inhibit transcription and reduce hERG mRNA expression. The interaction between hERG and heat shock protein was evaluated to study the mechanism of trafficking inhibition through co-immunoprecipitation. We found that rosuvastatin reduces the interaction of heat shock protein 70 (Hsp70) with the hERG protein, thereby affecting the folding of the hERG channel. Additionally, rosuvastatin significantly activates ATF6, which plays a key role in the activation of the unfolded protein response (UPR) pathway. Increased expression of the molecular chaperone calnexin and calreticulin, which are activated by ATF6 to help channel folding, further confirmed UPR activation. Meanwhile, the degradation of the hERG channel was mediated by lysosomes and proteasomes. In conclusion, Rosuvastatin reduced the expression of hERG plasma membrane by two pathways, the first is to disrupt the transport of immature hERG channels to the membrane, and the second is to increase the degradation of mature hERG channels. In addition, Rosuvastatin potently blocked hERG current, delayed cardiac repolarization, and thereby prolonged APDs and QTc intervals. Therefore, caution should be taken when rosuvastatin is used in the treatment of hyperlipidemia, especially when combined with drugs that can prolong the QT interval.


Assuntos
Anticolesterolemiantes/farmacologia , Membrana Celular/metabolismo , Canais de Potássio Éter-A-Go-Go/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Proteólise/efeitos dos fármacos , Rosuvastatina Cálcica/farmacologia , Potenciais de Ação , Membrana Celular/efeitos dos fármacos , Canais de Potássio Éter-A-Go-Go/efeitos dos fármacos , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Transporte Proteico , Resposta a Proteínas não Dobradas
12.
Chem Biol Interact ; 293: 115-123, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30086269

RESUMO

Metabolism of most endogenous and exogenous compounds is usually produced by the oxidation of cytochrome P450. Due to drug-drug interactions caused by the inhibition or induction of cytochrome P450 enzymes, changes in drug metabolism are the major causes of drug toxicity, CYP3A4 is one of the key isozymes, and involved in the metabolism of over 60% of clinical drugs. Human ether-a-go-go related genes (hERG) potassium channel is the most important target of many drugs and plays an important role in cardiac repolarization. Blockade of this channel may lead to long QT syndrome (LQTS), leading to sudden cardiac death. Therefore, it is necessary to evaluate the inhibitory properties of drugs on cytochrome P450 enzymes and hERG channel. We primarily evaluate the safety of berberine in combination with statins. Based on these findings, berberine in combination with statins has a greater inhibitory effect on CYP3A4 activity and CYP3A4 protein and mRNA expression than berberine alone. Simvastatin and atorvastatin reduce hERG current by accelerating channel inactivation. At the same time, the inhibitory effect of berberine and statin combination increased on hERG current by reducing the time constant of inactivation than the single drug alone. These results indicate that berberine in combination with statins can increase cardiotoxicity by inhibiting CYP3A4 and hERG channel.


Assuntos
Berberina/farmacologia , Citocromo P-450 CYP3A/metabolismo , Canal de Potássio ERG1/metabolismo , Expressão Gênica/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Berberina/uso terapêutico , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/genética , Canal de Potássio ERG1/antagonistas & inibidores , Canal de Potássio ERG1/genética , Células HEK293 , Células Hep G2 , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Cinética , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/patologia , Microssomos Hepáticos/metabolismo , Ratos , Sinvastatina/farmacologia , Sinvastatina/uso terapêutico , Testosterona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...